Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(59): 123907-123924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995029

RESUMO

Biofilm formation is a rising concern in the food industry. Escherichia coli (E. coli) is one of the most important food-borne pathogens that can survive in food and food-related environments and eventually produce biofilms. This study suggested that both coliphages used were successful in preventing the creation of new biofilms as well as removing existing ones. Confocal laser scanning microscopy verified these findings. According to the findings, neither coliphage survived at 37 °C, but both remained stable at 4 °C and - 20 °C for extended periods of time. The study revealed that both coliphages demonstrated a greater degree of gamma irradiation resistance when compared to E. coli. The study's results indicate that the implementation of a dual method, which incorporates gamma irradiation (1.5 kGy) and coliphage treatment, on various kinds of vegetables that were infected with E. coli, resulted in a significant reduction in bacterial count (surpassing 99.99%) following a 24-h incubation period. Combining gamma irradiation and the coliphage approach was significantly effective at lowering polysaccharide concentrations and proteins in the biofilm matrix. The results revealed that the pairing of gamma irradiation and coliphages acted in conjunction to cause disruptions in the matrix of biofilm, thereby promoting cell removal compared with either of the individual treatments. Ca+ ions strengthen the weak virion interaction with the relevant bacterial host cell receptors during the adsorption process. In conclusion, use of coliphage in combination with gamma irradiation treatment can be applied to improve fresh produce's microbial safety and enhance its storability in supermarkets.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Escherichia coli/efeitos da radiação , Verduras , Contagem de Colônia Microbiana , Biofilmes , Colífagos
2.
Environ Technol ; : 1-20, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37574764

RESUMO

Phosphorus in wastewater influents is a global issue. Controlling eutrophic water is crucial. Biological phosphorus removal is an economically and environmentally sustainable method for removing phosphorus from wastewater. This study aims to isolate and improve the capacity of aerobic phosphorus-removing bacteria to reduce excessive phosphate concentrations in the environment. Only three out of fourteen bacterial isolates demonstrated the highest phosphate removal efficiency using Toluidine blue-O. Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R were isolated from activated sludge and identified by 16srRNA. In a single-factor experiment, the effect of incubation periods, phosphate concentrations, carbon sources, sodium acetate concentrations, temperature, pH, and irradiation dosages were studied. Seventy-two hours of incubation, 55 mg/L PO4, sodium acetate as the carbon source, 30°C and pH 7 resulted in maximum phosphorus removal. After optimising the parameters, the removal efficiency of Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R increased from 73.5% to 85.1%, 79.1% to 98.1%, and 80.6% to 91.9%, respectively. Gamma irradiation showed significant results only in Klebsiella pneumoniae 6A where 100 Gy increased the phosphorous removal efficiency from 85.1% to 100%. Immobilised mixed culture of the three strains adapted better to 100 mg/L Phosphorus than pure cells. Therefore, this technique holds great new promise for phosphorus-contaminated sites bioremediation.

3.
Enzyme Microb Technol ; 147: 109767, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992401

RESUMO

A biosurfactant producing Gram positive bacterium isolated from anodic biofilm of textile wastewater fed MFC was identified as Bacillus sp. MFC (Accession number: MT322244). Scanning Electron Microscopy of the bacterium showed appendages, the bacterium forms biofilm on Congo red agar medium. The obtained results showed that the addition of 5 mg/l endogenous biosurfactant to the bacterial cells resulted in 19-fold increase in bacterial surface-bound exopolysaccharides (EPS) and 1.94-fold increase in biofilm. However, when the biosurfactant concentration increased to 20 and 40 mg/l, EPS and biofilm decreased and the cells lost their colony forming ability. The dielectric properties of the bacterial cells showed increase in conductivity and relative permittivity with increasing biosurfactant concentrations. The shape of the voltammogram currents peak, their location and Electrochemical impedance spectroscopy (EIS) suggest the involvement of biofilm as direct electron transfer pathway. The average voltage obtained was 0.65 V as compared to 0.45 V for the control MFC. Decolourization was tested for Congo red in a double chamber Microbial Fuel Cell (MFC), the results showed 2-fold increase in decolourization when biosurfactant is added post biofilm formation. The results confirm that Bacillus sp. MFC possess electrogenic properties and that adding low concentrations of endogenous biosurfactant to 24 h biofilm accelerates electron transfer by inducing perforations in the cell wall and increasing EPS as an electron transfer transient medium. Therefore, MFC performance can be enhanced.


Assuntos
Bacillus , Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Transporte de Elétrons
4.
Environ Technol ; 42(1): 148-159, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31140952

RESUMO

The slow electron transfer between microbial outer membrane and electrode surface is considered one of the limitations of Microbial Fuel Cell (MFC) performance. The aim of the present work is to assess the role of palladium α-lipoic acid nanocomplex compound (PLAC) in promoting bacteria-anode interfacial electron transfer, by studying the dielectric properties of Shewanella oneidensis WW-1 cell membrane and its contribution to biofilm formation on the anode. The results showed that adding PLAC increased bacterial cell membrane permeability and outer cell surface charge. Exopolysaccharides (EPS) and surface-bound proteins increased 2.27 and 1.14 fold, respectively upon adding 0.25% v/v PLAC. Dynamic Light Scattering (DLS) showed uniform distribution of Shewanella-PLAC biocomposite size while Zeta potential and Fourier Transform Infrared (FTIR) Spectroscopy results suggest that PLAC diffused inside the cells. Transmission Electron Microscope (TEM) images reveal Exopolysaccharide (EPS) mat around the cells when PLAC was added to the cells, also confirmed by the FTIR spectrum. Scanning Electron Microscope and Atomic Force Microscope (AFM) confirmed the thickness of biofilm in the presence of PLAC. The average voltage reached 492 mV (external resistance 1 KΩ) over 35 days using 0.25% v/v PLAC as compared to a few hours in MFCs lacking PLAC. The results suggest that the addition of PLAC assisted in interfacial direct electron transfer through enhancing biofilm formation, moreover, its hydrophilic/lipophilic nature facilitated the electron shuttling process from within the bacterial cell to the electrode surface suggesting the involvement of mediated electron transfer as well.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Biofilmes , Eletrodos , Transporte de Elétrons , Elétrons , Paládio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA